Formalized Procedure of Transition to Classical Limit in Application to the Dirac Equation
نویسنده
چکیده
Classical model SDcl of the Dirac particle SD is constructed. SD is the dynamic system described by the Dirac equation. For investigation of SD and construction of SDcl one uses a new dynamic method: dynamic disquantization. This relativistic purely dynamic procedure does not use principles of quantum mechanics. The obtained classical analog SDcl is described by a system of ordinary differential equations, containing the quantum constant as a parameter. Dynamic equations for SDcl are determined by the Dirac equation uniquely. The dynamic system SDcl has ten degrees of freedom and cannot be a pointlike particle, because it has an internal structure. Internal degrees of freedom appears to be described nonrelativistically. One discusses interplay between the conventional axiomatic methods and the dynamical methods of the quantum systems investigation. In particular, one discusses the reasons, why the internal degrees of freedom of the Dirac particle and their nonrelativistic character were not discovered during eighty years.
منابع مشابه
2 6 Ju l 2 00 5 Formalized procedure of transition to classical limit in application to the Dirac equation
Classical model SDcl of the Dirac particle SD is constructed. SD is the dynamic system described by the Dirac equation. For investigation of SD and construction of SDcl one uses a new dynamic method: dynamic disquantization. This relativistic purely dynamic procedure does not use principles of quantum mechanics. The obtained classical analog SDcl is described by a system of ordinary differentia...
متن کاملNon-Relativistic Limit of Neutron Beta-Decay Cross-Section in the Presence of Strong Magnetic Field
One of the most important reactions of the URCA that lead to the cooling of a neutron star, is neutron beta-decay ( ). In this research, the energy spectra and wave functions of massive fermions taking into account the Anomalous Magnetic Moment (AMM) in the presence of a strong changed magnetic field are calculated. For this purpose, the Dirac-Pauli equation for charged and neutral fermions is ...
متن کاملHydrogen Abstraction Reaction of Hydroxyl Radical with 1,1-Dibromoethane and 1,2-Dibromoethane Studied by Using Semi-Classical Transition State Theory
The hydrogen abstraction reaction by OH radical from CH2BrCH2Br (R1) and CH₃CHBr2 (R2) is investigated theoretically by semi-classical transition state theory. The stationary points for both reactions are located by using ωB97X-D and KMLYP density functional methods along with cc-pVTZ basis. Single-point energy calculations are performed at the QCISD(T) and CCSD(T) levels of theory with differe...
متن کاملSADDLE POINT VARIATIONAL METHOD FOR DIRAC CONFINEMENT
A saddle point variational (SPV ) method was applied to the Dirac equation as an example of a fully relativistic equation with both negative and positive energy solutions. The effect of the negative energy states was mitigated by maximizing the energy with respect to a relevant parameter while at the same time minimizing it with respect to another parameter in the wave function. The Cornell pot...
متن کاملترکش گلوئون به چارمونیوم برداری J/psi با در نظر گرفتن اثر تابع موج مزون
Studying the production or decay processes of heavy quarkonia (the bound state of heavy quark-antiquark) is a powerful tool to test our understanding of strong interaction dynamics and QCD theory. Fragmentation is the dominant production mechanism for heavy quarkonia with large transverse momentum. The fragmentation refers to the production process of a parton with high transverse momentum whic...
متن کامل